

HIGH TONNAGE FOREST BIOMASS FROM SOUTHERN PINE

STEVE TAYLOR, BOB RUMMER, FRANK CORLEY, TOM GALLAGHER, OLADIRAN FASINA, TIM MCDONALD, MATHEW SMIDT

BIOMASS CHALLENGE

- To meet U.S. energy goals, highproductivity, low-cost biomass supply systems are needed
- **x** U.S. Department of Energy goals:
 - Logistical systems to produce 100 million dry tons/yr biomass
 - Harvest and transport biomass for \$25 per dry ton by 2012

FEEDSTOCK CHALLENGES Supply

- * Biomass is the South's greatest opportunity for a renewable energy source
 - × 200 million acres of forests
 - **x** 35 million acres of productive pine plantations
- × Two sources of feedstock
 - + Forest residues
 - + Dedicated energy harvest

Approximately 40 million tons/yr available

FEEDSTOCK CHALLENGES Supply

- Dedicated southern pine energy plantations can provide significant feedstocks for U.S. biofuel and biopower demands
 - Biomass yields of 7 dry tons/acre*yr may be possible with genetic advances
 - + 15 million acres of southern pine plantations could produce 105 million tons/yr

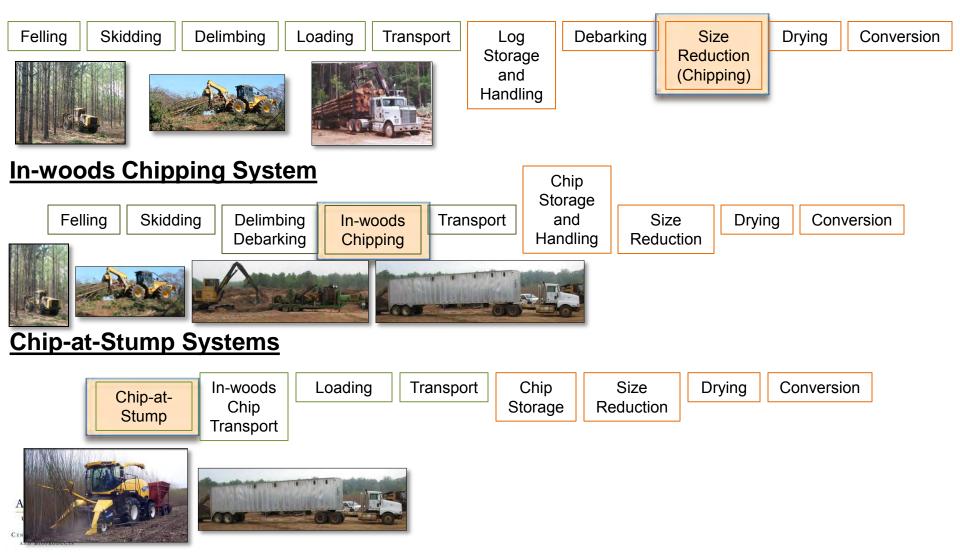
AND RIOPRODUCTS

AUBURN HIGH TONNAGE CONSORTIUM

- × Auburn University
- × USDA Forest Service
- * Corley Land Services
- × Tigercat
- × Precision Husky
- **×** Biorefinery collaborators
 - × Coskata
 - × Genera Energy
 - × Rentech
- × Department of Energy

BIOMASS SUPPLY SYSTEM Dedicated energy plantation

- + Southern pine
 - × Loblolly pine is primary species
 - × Proposed final harvest at age 10 12
 - × Target production of 7 dry tons/acre*year
- + Benefits
 - Increased harvesting productivity (and lower costs) over traditional thinnings
 - × More frequent cash flow for landowner with flexible management options



BIOMASS LOGISTICS SYSTEMS

Traditional Longwood System

HARVEST AND TRANSPORT

High Productivity Harvesting System

- + Track-type feller buncher
 - × High efficiency
 - × Low site impacts
- + Wheeled Skidder
 - Traditional transport option in southern pine systems

HARVEST AND TRANSPORT

High Productivity Processing and Transport

- + In-woods chipping
 - × High productivity chipper
 - × Debarking for clean chips
- + Truck transport
 - × High capacity trailers

HARVEST AND TRANSPORT

High Productivity Harvesting System

+ "Cold" logging system

- × Separation of felling, skidding, and chipping
- × Higher productivity
- + "Transpirational drying"
 - After felling, bunches remain in forest for 6 weeks to reduce moisture content to near 30%
 - × Increases transportation efficiency
 - × Increases energy content and process efficiency

Example transport costs for wood chips at various moisture contents (for 60 mile haul distance).

	Green		
%	Tons per	Dry Tons	Cost per
Moisture	Load	per Load	Dry Ton
50%	28.0	14.0	\$14.40
45%	28.0	15.4	\$13.09
40%	28.0	16.8	\$12.00
35%	28.0	18.2	\$11.08
30%	28.0	19.6	\$10.29
25%	28.0	21.0	\$9.60

PROJECT SCOPE

Phase I - R&D

- + Design new machines and systems
- + Develop benchmarks for existing system productivity, cost, feedstock quality

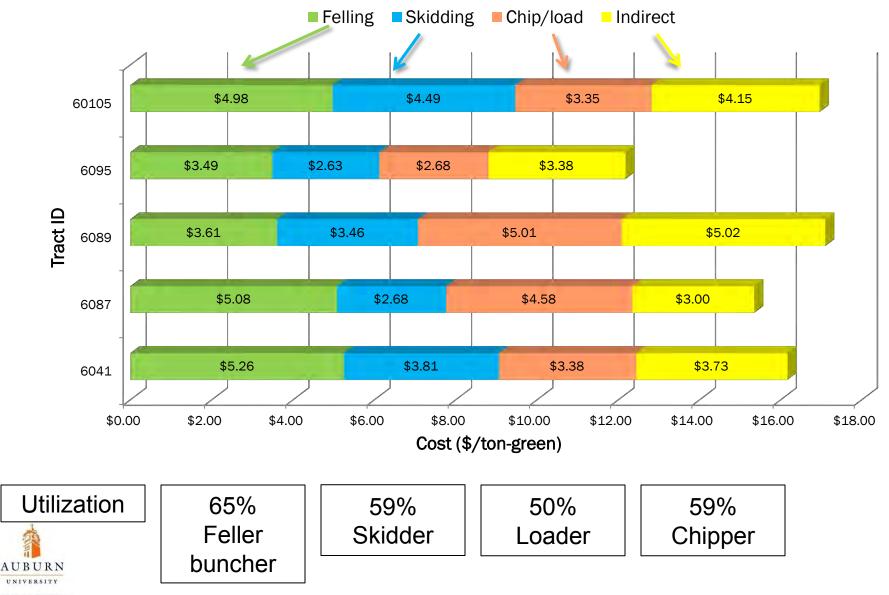
Phase 2 - Commercial-Scale Test and Demonstration

- + Test new machines
- + Test transpirational drying
- + Test extended shifts
- + Quantify industry and landowner acceptance
- + Develop and demonstrate information systems

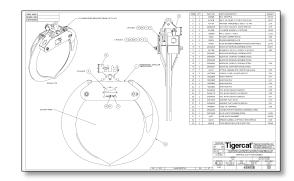
PHASE 1 = R&R

Benchmarking of existing operations

- + Testing typical southern pine tree-length harvesting systems
 - × Wheeled feller buncher
 - × Wheeled skidder
 - × Whole tree chipper
 - × Trucking to mill
- + Benchmark tests
 - × 9 month period to document cost, productivity, and feedstock quality



BENCHMARKING COST EXAMPLES



HARVESTING SYSTEM RESIGN

Design activities

- + System design
 - × Based on models of predicted machine and system productivity / cost
- + Mechanical design
 - Standard engineering design and analysis to meet functional requirements and productivity goals

Skidder Proj	ect	ed Cost	
Total Cost per PMH		\$121.67	/PMH
Total Cost per SMH		\$91.25	/SMH
Cost per ton		\$1.59	/ton
Feller Buncher	Pro	jected C	ost
Total Cost per PMH	\$	147.95	/PMH
Total Cost per SMH	\$	110.97	/SMH
Cost per ton	\$	2.02	/ton
Overall Product	ivit	y and C	ost
Feller Productivity		73.4	tons/PMH
Skidder Productivity		76.8	tons/PMH
Feller Cost	\$	2.02	/ton
Skidder Cost	\$	1.59	/ton
Total Cost	\$	3.60	/ton

HARVESTING SYSTEM DESIGN

- Model developed to predict productivity of the tracked feller buncher – wheeled skidder system
 - + Productivity models for felling and skidding functions
 - + Machine rate methods used for cost calculations
 - + Overall system productivity / cost prediction

					Rov	w Spac	ing			
		1	2	3	4	5	6	7	8	9
	8	x	x	х	х	х	x	х	х	х
cing	7	x	×	x	x	x	x	x	x	x
e e	6	×	×	x	x	x	x	×	×	x
S d	5	×	x	×	^	^	^	×	×	x
0	4	×	x	x	^	^	^	x	x	x
Ľ	3	×	x	^	^	x	^	^	x	x
	2	x	x	^	x	x	x	^	x	x
	1	x	x	^	x	x	x	^	x	x

Characteristics

20%

97%

75%

25 sq. feet

160 seconds 40 seconds 200 seconds

25 seconds

			Bundle and Skidding	g
Felling Para	meters		and a set of	
Time per cut	6	seconds	Grapple Area	
Time per dump	8	seconds	Dia. Inc. due to Butt	
Timer per move	10	seconds	Void Space	
			Grapple Utilization	
Bundle Building?	No	6	Machine Utilization	
# of Dumps for Full Bundle	2			
			Travel Empty Time	
Felling Performance	511	trees/hr	Bunch Building	
Trees-per-Bundle	25	10 mm + 10	Travel Loaded	
These per partate	20		Deck Time	

Skidder Proj	ect	ed Cost	
Total Cost per PMH		\$121.67	/PMH
Total Cost per SMH		\$91.25	/SMH
Cost per ton		\$1.59	/ton
Feller Buncher I	Pro	jected C	ost
Total Cost per PMH	\$	147.95	/PMH
Total Cost per SMH	\$	110.97	/SMH
Cost per ton	\$	2.02	/ton
Overall Product	ivit	y and C	ost
Feller Productivity		73.4	tons/PMH
Skidder Productivity		76.8	tons/PMH
Feller Cost	\$	2.02	/ton
Skidder Cost	\$	1.59	/ton
Total Cost	\$	3.60	/ton

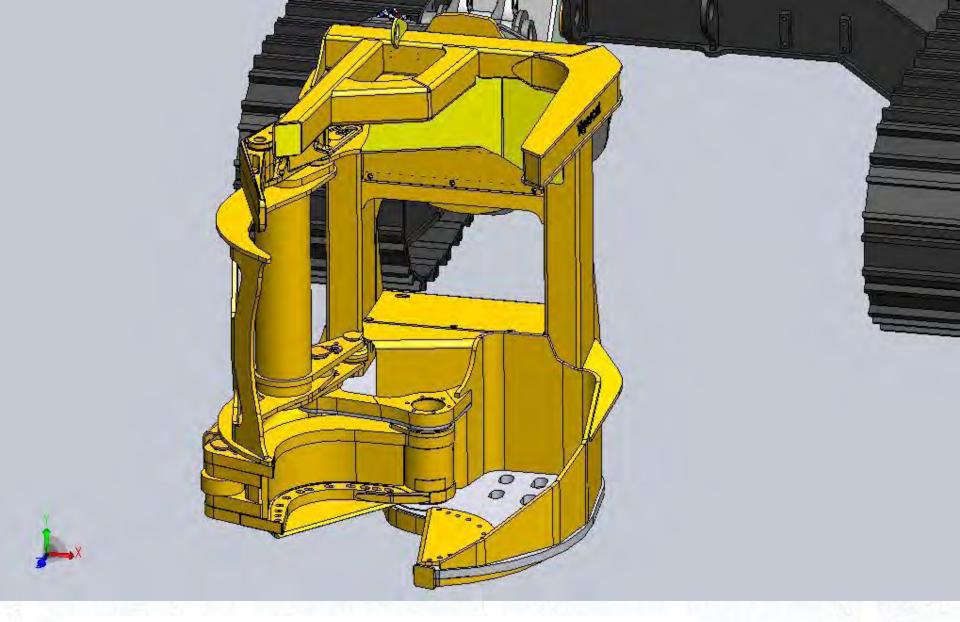
HARVESTING SYSTEM DESIGN

- Model results target average system productivity >70 green tons/PMH
- Predicted (theoretical minimum) costs for felling and skidding <\$4.00 per green ton
 - + \$2.00 /ton felling

+ \$1.60/ton skidding

	Row Spacing									
		1	2	3	4	5	6	7	8	9
-	8	x	x	х	х	х	х	х	х	х
pacing	7	×	×	×	x	x	x	×	×	x
ac	6	×	x	x	x	x	x	×	×	x
S S	5	×	x	×	^	^	^	×	×	x
8	4	×	x	x	^	^	^	x	×	x
L L	3	x	x	^	^	x	^	^	×	x
	2	x	×	^	x	x	x	^	x	x
	1	x	x	^	x	x	x	^	x	х

Felling Para	meters	
Time per cut	6	seconds
Time per dump	8	seconds
Timer per move	10	seconds
Bundle Building?	No	
# of Dumps for Full Bundle	2	
Felling Performance	511	trees/hr
Trees-per-Bundle	25	


Skidder Proj	ect	ed Cost	-
Total Cost per PMH		\$121.67	/PMH
Total Cost per SMH		\$91.25	/SMH
Cost per ton		\$1.59	/ton
Feller Buncher	Pro	jected C	ost
Total Cost per PMH	\$	147.95	/PMH
Total Cost per SMH	\$	110.97	/SMH
Cost per ton	\$	2.02	/ton
Overall Product	ivit	y and C	ost
Feller Productivity		73.4	tons/PMH
Skidder Productivity		76.8	tons/PMH
Feller Cost	\$	2.02	/ton
Skidder Cost	\$	1.59	/ton
Total Cost	\$	3.60	/ton

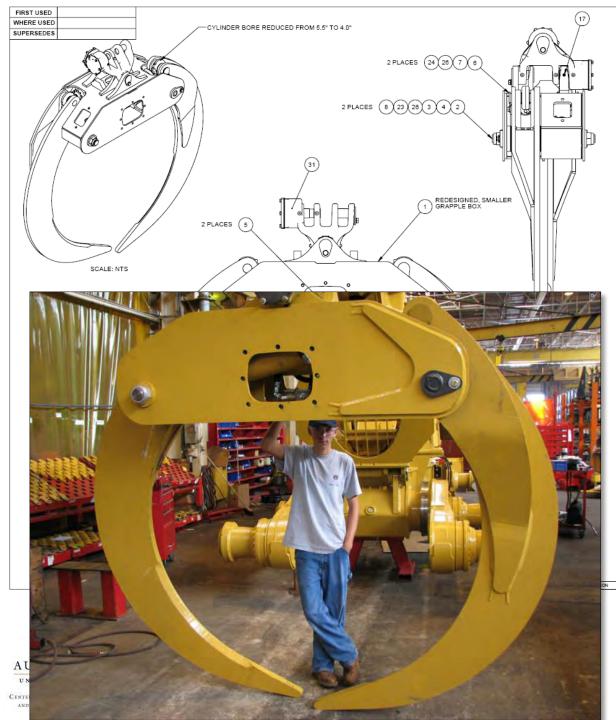
FELLER BUNCHER DESIGN

- Tigercat 845 D tracked feller buncher
 - + EPA Tier 4i compliant engine
 - + High speed, low cost shear felling head
 - + Designed for trees up to 18 in.
 dbh; average dbh = 6 in.
 - + Energy recovery system for swing mechanism
 - + ER boom system provides energy recovery and planar motion

AUBURN

•DT1802 Biomass Harvesting High Speed Shear

•1.5 seconds to open or close shear



Wheeled Skidder Design

- Tigercat 635 D wheeled skidder
 - 25 sq. ft. grapple
 - 98 tree capacity at 6 in. tree diameter

ITEM	QTY.	PART NO.	PART DESCRIPTION	WEIGHT
1	1	34059B	BOX, GRAPPLE	967.29
2	2	34167B	PIN, 2 1/4-12UNF 2 1/2 OD X 22 9/16 LG.	38.67
3	2	13713A	WASHER, HARDENED 2 3/8ID X 1/2 THK	2.16
4	2	2920A225	NUT LOCK COLLAR 2 1/4UNF GRC ZN	2.75
5	2	34169B	CYLINDER, 4"BORE x 21"STROKE	126.52
6	2	1125809	PIN, 2 1/20D x 7 3/4LG	12.63
7	2	1029A	SPACER, KEEPER PLATE	0.08
8	2	13867A	SPACER,KEEPER PLATE	0.19
9	1	AV005	FLOW DIVIDER/COMBINER W/CROSS PORT REL'F	20.46
10	3	2542A003	ELBOW 45 08ORS(M)-08ORB(M) STEEL	0.0011
11	4	34170B	BUSHING, 2 1/2 ID X 3 1/20D X 3 15/16 LG	4.80
12	1	2504A007	ELBOW 90 08ORS(M)-12ORB(M) STEEL	-
13	2	2504A004	ELBOW 90 12ORS(M)-12ORB(M) STEEL	-
14	1	2504A008	ELBOW 90 08ORS(M)-08ORB(M) STEEL	-
15	1	2508A004	ELBOW 90 12ORS(F)-12ORS(M) STEEL	0.39
16	2	2500A001	ELBOW 90, 02NPT(M)-04JIC(M) STEEL	-
17	7	AA012	FITTING, GREASE STR 1/8NPTF SAE LONG	0.03
18	2	1327C059	O-RING, 2 1/2ID x 3/16C/S N674-70	0.01
19	4	10023B04	SHIM 1/4GATHK	0.77
20	4	10023B05	SHIM 10GATHK	0.41
21	4	10023803	SHIM 12GATHK	0.32
22	3	10023802	SHIM 18GATHK	0.18
23	2	2434A200	CPS, HXHD 3/4UNCX2 GR8 ZN	0.05
24	2	2434A175	CPS, HXHD 3/4UNCX1 3/4 GR8 ZN	0.05
25	2	2424A300	CPS, HXHD 3/8UNCX3 GR8 ZN	0.01
26	4	2451A075	WASHER, FLAT 3/4 ZN	0.12
27	2	2450A038	WASHER, FLAT HARD 3/8 GR9 ZN	0.01
28	1	34060BH	HOSE KIT, GRAPPLE	0.00
29	1	2524A005	CONNECTOR STR DBORS(M)-08ORB(M) STEEL	-
30	1	2657A005	PLUG HXSOC 08ORB(M) STEEL	0.000
31	1	cy071	YOKE, ESCO SNUBBER	382.58
32	1	bw018	GREASE ALBIDA LC EP MOLY (55KG DRUM)	0.00
33	2	48961B	TONG, GRAPPLE, PLATE, 25 SQFT SM	790.89

		TOLERANCE UNLESS NOTED XXX ±005 XX ±010 FRACTIONS ±1/16 ANGLES 1/2* UNITS IN & LBS	THIS DRAWIN MUST NOT B	BIS THE PROPE		0 Consolidate aris, Ontario, el:(519)442-10 ERCAT INDU THOUT THE	
			MATERIAL N/A				NG - SEE RS003 NOT PAINT
			© 11/04/10	1:16 UNLESS NOTED	3349.99		SHEET NUMBER
		DRAWN BY	APPROVED BY		WING NUMBER		REVISION
ECN	INT.	DJG		48960B 00			00

SKIPPING COST AND PRODUCTIVITY

648 JOHN DEERE

- × 926' skid distance
- × 5.5 minutes per cycle
- × 3.1 tons per cycle
- × 30 tons/PMH
- **×** \$90/PMH
- × \$3.00 per ton

630D TIGERCAT

- × 1005' skid distance
- **x** 5.3 minutes per cycle
- × 8.8 tons per cycle
- × 100 tons/PMH
- **x** \$130/PMH
- × \$1.30 per ton

IN WOODS CHIPPING

- + Multiple configurations possible
 - × 4 or 8 knives
 - × Pulp chips
 - × Microchips
- + Clean chips possible with addition of flail delimber

CHIPPING COST AND PRODUCTIVITY

PRECISION 2300

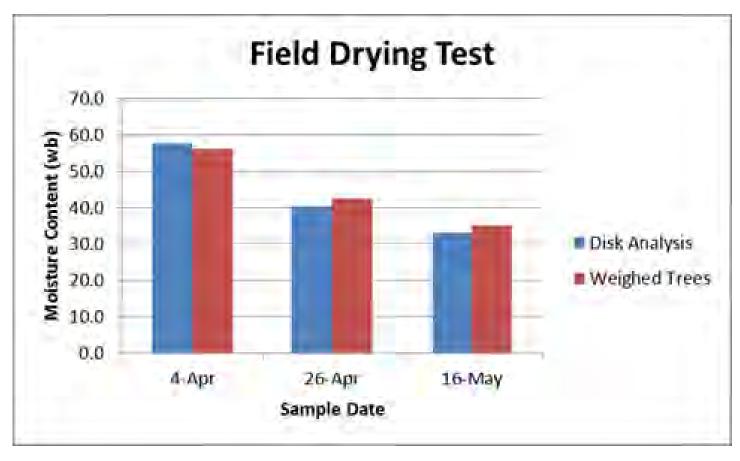

- × Ave. 34 minutes/load
- × 30 tons/PMH
- **x** \$280/PMH
- **x** \$9.33/ton

PRECISION 2675

- **x** Ave. 19 minutes/load
- × 70 tons/PMH
- **x** \$333/PMH
- **x** \$4.76/ton

SYSTEM COST COMPARISON

TRAILER DESIGN

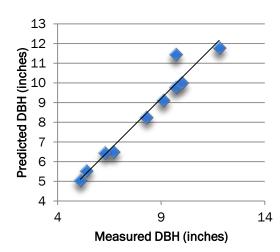

- Harvesting system designed for transpirational drying of wood
 - Trees allowed to dry in field for up to 6 weeks to reduce moisture content near 30%
- High capacity trailers designed to transport greater volume of wood (at lower moisture content)
 - + Designs up to 114 cu. yds.
 - + Volume increases up to 30%

"TRANSPIRATIONAL" DRYING

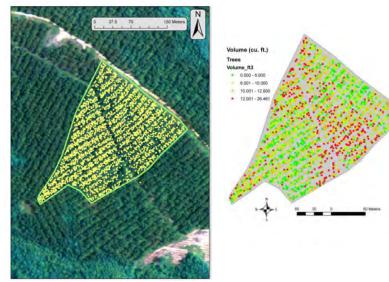
INFORMATION SYSTEMS

× Chipping

- + Fuel consumption monitoring
- + Sensor for mass flow of chips
- + Sensors for biomass properties
 - × Moisture content
 - × Energy content
 - × Ash content


INFORMATION SYSTEMS

x In-stream determination of fuel characteristics




INFORMATION SYSTEMS

- Improved system management is key to meeting cost goals
- Feller buncher systems to monitor productivity
 - + Productivity information gathered and displayed using CAN bus (e.g. trees/hr)
 - + Machine location and tree size collected by GPS and CAN bus to develop biomass yield information
 - + Machine performance (fuel consumption, etc.) supplied by CAN bus
- * Skidder productivity monitoring systems use GPS and CAN bus

PRODUCTION DATA

379 trees cut, 1 hour, 49 minutes, 9 seconds = 208 trees hour⁻¹ AUBURN 80 accumulations, 4.7 trees accumulation⁻¹

FEEDSTOCK QUALITY

- Biofuel industry emphasized the importance of understanding harvesting system effects on feedstock quality
- **×** Feedstock data collected from:
 - + Standing trees
 - + Trees harvested with feller buncher and skidder

Data from standing trees (loblolly pine)

Corley benchmark sites

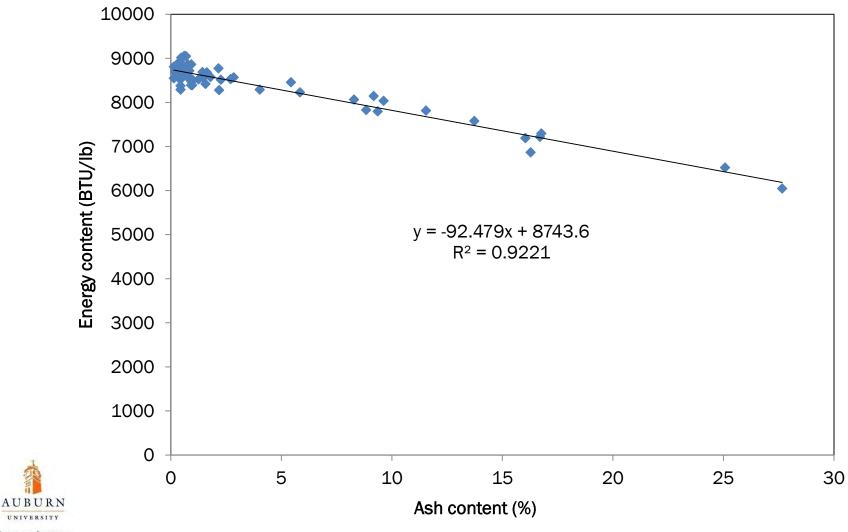
Auburn

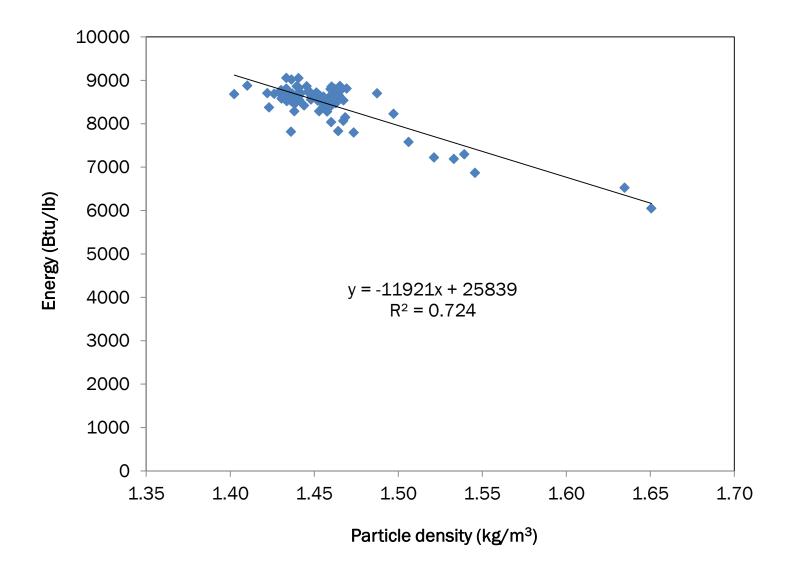
site

F	EDST	OCK (QUAL	ITY F	BASEL	NE
		Energy (BTU/lb)	Carbon (%)	Ash (%)	Alkali (% of ash)	Silica (%)
	Foliage	8195ª	49.52 ^a	2.59ª	92.71 ^a	0.005ª
n	Limbs	7773 ^a	48.65 ^b	1.38 ^b	94.10 ^{a,b}	0.000 ^b
e	Stem without Bark	8111ª	48.18 ^b	0.40 ^c	97.93 ^c	0.000 ^b
	Bark	8029ª	51.64 ^d	1.37 ^b	80.61 ^d	0.001 ^b
	Stem without Bark	8714×	49.71×	0.38 [×]	94.04×	0.000×
	Bark	9131 ^y	52.76 ^y	1.30 ^y	89.14 ^y	0.180 ^y

HANRLING EFFECTS ON QUALITY

Data from chipped trees




	Energy (BTU/Ib)	Ash (%)	Carbon (%)
Whole tree		(70)	(,,,,
Not skidded	8715ª	0.84ª	49.92ª
Delimbed tree			
Not skidded	8702ª	0.72 ^a	50.16ª
Whole tree skidded	8566 ^b	2.85 ^b	50.09 ^a

ENERGY VERSUS ASH CONTENT (PINE)

ENERGY CONTENT VS. PARTICLE DENSITY

UNIVERSITY Center for Bioenergy and Bioproducts

AUBURN

LANDOWNER AND LOGGER ACCEPTANCE

Will landowners accept short rotation pine energy plantation? Will loggers accept new equipment and operating practices?

Focus groups:

- × 5 landowner groups
- × 5 logger groups
- × 100+ landowners

× 30 loggers

LANDOWNER BIOENERGY CONCERNS

My decision to produce and sell trees for conversion to energy...

- The "right" price	1.3
- A steady market	1.6
- The environmental impacts of intensive forest	
management	2.6
- The benefit to the local	
economy	2.7
 A sense that I am addressing a larger 	
problem	2.9
 Long term contracts with buyers 	3.1
Duyers	5.1
- Enrollment in BCAP	3.6

Short rotation forest management practiced on some of my property will likely fit with my objectives to:

- Provide income	1.9
 Protect soil and water resources 	3.0
 Protect the visual appearance of my property 	3.1
- Provide wildlife habitat	3.2
-Enhance my personal enjoyment	3.5

Average Score 1 = Very Important 7 = Not Important

LOGGER BIOENERGY CONCERNS

My decision to invest in equipment for harvesting biomass could be determined by

- Profitability	1.9
- Long term contracts with buyers	2.0
- A steady market	2.0
- The "right" price	2.1
- The benefit to the local economy	2.8
 A sense that I am addressing a larger problem 	3.1

Current barriers to investing in equipment for harvesting biomass are

- Markets for biomass	2.0
- Availability of long term contracts	2.3
- Source of timber for biomass	2.4
- Adoption of new technology	2.6
-Access to financing	2.7
-Availability of trucking (contractors or drivers)	2.8
- Labor availability	2.8

Averages 1 = Strongly Agree 7 = Strongly Disagree

UNIVERSITY Center for Bioenergy and Bioproducts

AUBURN

High yield pine plantations can supply significant portion of U.S. biofuel and biopower feedstocks.

- New techniques and high-productivity machines can reduce delivered costs.
- * Producers will adopt new systems if the market develops.

